REE – Rare Earth Elements and their Uses

REE – Rare Earth Elements and their Uses

The demand for rare earth elements has grown rapidly, but their occurrence in minable deposits is limited.

Rare Earth Element Production

This chart shows a history of rare earth element production, in metric tons of rare earth oxide equivalent, between 1950 and 2015. It clearly shows the United States’ entry into the market in the mid-1960s when color television exploded demand. When China began selling rare earths at very low prices in the late-1980s and early-1990s, mines in the United States were forced to close because they could no longer make a profit. When China cut exports in 2010, rare earth prices skyrocketed. That motivated new production in the United States, Australia, Russia, Thailand, Malaysia, and other countries.


What Are Rare Earth Elements (REEs)?

Rare earth elements are a group of seventeen chemical elements that occur together in the periodic table (see image at right). The group consists of yttrium and the 15 lanthanide elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). Scandium is found in most rare earth element deposits and is sometimes classified as a rare earth element. The International Union of Pure and Applied Chemistry includes scandium in their rare earth element definition.

The rare earth elements are all metals, and the group is often referred to as the “rare earth metals.” These metals have many similar properties and that often causes them to be found together in geologic deposits. They are also referred to as “rare earth oxides” because many of them are typically sold as oxide compounds.

Uses of Rare Earth Elements

Rare earth metals and alloys that contain them are used in many devices that people use every day such as computer memory, DVDs, rechargeable batteries, cell phones, catalytic converters, magnets, fluorescent lighting and much more.

During the past twenty years, there has been an explosion in demand for many items that require rare earth metals. Twenty years ago there were very few cell phones in use, but the number has risen to over 7 billion in use today. The use of rare earth elements in computers has grown almost as fast as cell phones.

United States Usage
(2015 data from USGS)
Chemical Catalysts
Metallurgy & Alloys
Ceramics and Glass Making
Glass Polishing

Many rechargeable batteries are made with rare earth compounds. Demand for the batteries is being driven by demand for portable electronic devices such as cell phones, readers, portable computers, and cameras.

Several pounds of rare earth compounds are in batteries that power every electric vehicle and hybrid-electric vehicle. As concerns for energy independence, climate change and other issues drive the sale of electric and hybrid vehicles, the demand for batteries made with rare earth compounds will climb even faster.

Rare earths are used as catalysts, phosphors, and polishing compounds. These are used for air pollution control, illuminated screens on electronic devices, and the polishing of optical-quality glass. All of these products are expected to experience rising demand.

Other substances can be substituted for rare earth elements in their most important uses; however, these substitutes are usually less effective and costly.

From the 1950s until the early 2000s, cerium oxide was a very popular lapidary polish. It was inexpensive and very effective. The recent price increases have almost eliminated the use of cerium oxide in rock tumbling and the lapidary arts. Other types of polish, such as aluminum and titanium oxide, are now used in its place.

Critical Defense Uses

Rare earth elements play an essential role in our national defense. The military uses night-vision goggles, precision-guided weapons, communications equipment, GPS equipment, batteries and other defense electronics. These give the United States military an enormous advantage. Rare earth metals are key ingredients for making the very hard alloys used in armored vehicles and projectiles that shatter upon impact.

Substitutes can be used for rare earth elements in some defense applications; however, those subsitutes are usually not as effective and that diminishes military superiority. Several uses of rare earth elements are summarized in the table below.

Defense Uses of Rare Earth Elements
Lanthanum night-vision goggles
Neodymium laser range-finders, guidance systems, communications
Europium fluorescents and phosphors in lamps and monitors
Erbium amplifiers in fiber-optic data transmission
Samarium permanent magnets that are stable at high temperatures
Samarium precision-guided weapons
Samarium “white noise” production in stealth technology

Are These Elements Really “Rare”?

Rare earth elements are not as “rare” as their name implies. Thulium and lutetium are the two least abundant rare earth elements – but they each have an average crustal abundance that is nearly 200 times greater than the crustal abundance of gold. However, these metals are very difficult to mine because it is unusual to find them in concentrations high enough for economical extraction.

The most abundant rare earth elements are cerium, yttrium, lanthanum and neodymium. They have average crustal abundances that are similar to commonly used industrial metals such as chromium, nickel, zinc, molybdenum, tin, tungsten and lead. Again, they are rarely found in extract able concentrations.

History of Rare Earth Production and Trade


Before 1965 there was relatively little demand for rare earth elements. At that time, most of the world’s supply was being produced from placer deposits in India and Brazil. In the 1950s, South Africa became the leading producer from rare earth bearingmonazite deposits. At that time, the Mountain Pass Mine in California was producing minor amounts of rare earth oxides from a Precambrian carbonatite.

Color Television Ignites Demand

The demand for rare earth elements saw its first explosion in the mid-1960s, as the first color television sets were entering the market. Europium was the essential material for producing the color images. The Mountain Pass Mine began producing europium from bastnasite, which contained about 0.1% europium. This effort made the Mountain Pass Mine the largest rare earth producer in the world and placed the United States as the leading producer.

China Enters the Market

China began producing noteable amounts of rare earth oxides in the early 1980s and became the world’s leading producer in the early 1990s. Through the 1990s and early 2000s, China steadily strengthened its hold on the world’s rare earth oxide market. They were selling rare earths at such low prices that the Mountain Pass Mine and many others throughout the world were unable to compete and stopped operation.

Defense and Consumer Electronics Demand

At the same time, world demand was skyrocketing as rare earth metals were designed into a wide variety of defense, aviation, industrial and consumer electronics products. China capitalized on its dominant position and began restricting exports and allowing rare earth oxide prices to rise to historic levels.

China as the Largest Rare Earth Consumer

In addition to being the world’s largest producer of rare earth materials, China is also the dominant consumer. They use rare earths mainly in manufacturing electronics products for domestic and export markets. Japan and the United States are the second and third largest consumers of rare earth materials. It is possible that China’s reluctance to sell rare earths is a defense of their value-added manufacturing sector.

China’s Apex of Production Dominance?

The Chinese dominance may have peaked in 2010 when they controlled about 95% of the world’s rare earth production and prices for many rare earth oxides had risen over 500% in just a few years. That was an awakening for rare earth consumers and miners throughout the world. Mining companies in the United States, Australia, Canada and other countries began to reevaluate old rare earth prospects and explore for new ones.

High prices also caused manufacturers to do three things: 1) seek ways to reduce the amount of rare earth elements needed to produce each of their products; 2) seek alternative materials to use in place of rare earth elements; and, 3) develop alternative products that do not require rare earth elements.

This effort has resulted in a decline in the amounts of rare earth materials used in some types of magnets and a shift from rare earth lighting products to light-emitting diode technology. In the United States, the average consumption of rare earths per unit of manufactured product has decreased but the demand for more products manufactured with rare earth elements has increased. The result has been higher consumption.

China Buying Resources Outside of China

Chinese companies have been purchasing rare earth resources in other countries. In 2009 China Non-Ferrous Metal Mining Company bought a majority stake in Lynas Corporation, an Australian company that has one of the highest outputs of rare earth elements outside of China. They also purchased the Baluba Mine in Zambia.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s