The M12 Ultraviolet (UV) Flashlight and Lamp

uv lamp and flashight

The M12 Ultraviolet (UV) Flashlight and Lamp

This inexpensive lamp produces both longwave and shortwave ultraviolet light for examining fluorescent minerals and other items. It has an effective illumination distance of about 6 to 12 inches. This makes it a good lamp for classroom and office use, or for examination of hand-size specimens in the field. It is not powerful enough to search for fluorescent minerals in the field while walking.

The lamp requires four AA batteries (not provided) for operation. UV-blocking eye protection should be worn while using this lamp. Two pairs of UV-blocking polycarbonate safety glasses are included with the lamp. I have this kind of UV light.


The Best Place to Hunt Meteorites

In most parts of the world, a person could search throughout a lifetime and never find a single meteorite. However, a small number of researchers are finding several hundred meteorites each winter in a few special locations in Antarctica.

In most parts of the world, meteorites are very difficult to find because meteorites that fall there can be…

  • quickly destroyed by weathering
  • hard to distinguish from local materials
  • hidden by vegetation
  • covered by surface materials

map of meteorite hunting areas in Antarctica

Meteorite map: A map of meteorite recovery locations in the Transantarctic Mountains. NASA image.

Advantages of Cold Climate

In Antarctica, freshly fallen meteorites are protected by the cold climate. Iron meteorites do not rust in the cold conditions, and stony meteorites weather very slowly.

Members of the search team move across the ice on foot or by snowmobile looking for meteorites. The dark-colored meteorites contrast sharply with the white snow and ice. Some of the dark objects found are meteorites, but the searchers do find many terrestrial rocks that have been incorporated into the ice by the glaciers. They search by walking or by snowmobile, and which method they use is determined by ice conditions, weather conditions, and the abundance of meteorites present in the area.

Although the cold climate is ideal for preserving meteorites, it presents a huge challenge to the researchers who hunt them. They have to travel to a remote location where they will live in tents in subzero weather. Out on the hunt they face intense cold, fierce wind, and blistering sun. It takes a determined and dedicated person to do this for several weeks each year.

How Antarctic ice transports meteorites

How Antarctic ice transports meteorites: A model of how meteorites fall in a zone of accumulation, are deeply buried by snow, and then flow with the ice to a zone of ablation where they reappear at the surface. NASA image.

Ice Movement and Meteorite Concentration

The two most important reasons why meteorite hunting in some parts of Antarctica is so productive are: 1) ice movements, and, 2) ablation.

The ice of the Antarctic continent is in motion. The ice grows thicker in some areas from snow accumulation, then it slowly flows away from those areas under its own weight. Remember that the continent is covered by a glacier.

The theory of ice movement is shown in the accompanying diagram. It shows how meteorites are buried in zones of snow accumulation. Then the ice moves under its own weight away from these snowfields towards the edge of the Antarctic continent. In some areas rock formations block the flow of ice. Where this occurs, steady katabatic winds can remove the ice by sublimation and mechanical abrasion. Up to ten centimeters of ice per year can be removed by these ablation processes.

meteorite hunting weather

Meteorite hunting weather: This photograph shows what conditions can be like for meteorite hunters in Antarctica. It is a very difficult place to live, even for a few weeks. NASA image.

Curating Pristine Meteorites

The meteorites found in Antarctica are in pristine condition. They are not weathered like meteorites found in temperate climates. The original fusion crust, formed by ablation of the meteorite as it fell through the atmosphere, is often preserved.

When a meteorite is found, a snowmobile with a high-resolution GPS receiver is driven to the site to obtain a very accurate location. The meteorite is then photographed in place, recovered, placed into a sterile Teflon bag, assigned a unique field number, logged into a field book, and given a detailed field description. The discovery site is then marked with a flag bearing the meteorite’s identification number.


“Satellite Photo of Earth at Night”

Shown below is a famous NASA image that is often called a “satellite photo of earth at night”. It isn’t really a “photo”. Instead it is an image that was compiled using data from a sensor aboard the NASA-NOAA Suomi National Polar-orbiting Partnership satellite launched in 2011. This sensor allows researchers to observe Earth’s atmosphere and surface during nighttime hours. It is a map of the location of lights on Earth’s surface. Each white dot on the map represents the light of a city, fire, ship at sea, oil well flare or other light source. The full-earth image is shown below along with detail images of the United States, Europe and Africa, South America, Asia and Australia.

Satellite Photo of the World at Night

Earth at night
This map shows the geographic distribution of cities. It clearly shows that cities are concentrated in Europe, the eastern United States, Japan, China and India. It is a better map for showing the geography of night time electricity consumption for outdoor lighting than it is for showing the geography of population. For example: the eastern United States is very bright but the more densely populated areas of China and India are not nearly as bright in this image because the amount of light per person is smaller. NASA Image.


Copper – A Metal Used Through The Ages

Copper was one of the first metals ever extracted and used by humans, and it has made vital contributions to sustaining and improving society since the dawn of civilization. Copper was first used in coins and ornaments starting about 8000 B.C., and at about 5500 B.C., copper tools helped civilization emerge from the Stone Age. The discovery that copper alloyed with tin produces bronze marked the beginning of the Bronze Age at about 3000 B.C.

Copper is easily stretched, molded, and shaped; is resistant to corrosion; and conducts heat and electricity efficiently. As a result, copper was important to early humans and continues to be a material of choice for a variety of domestic, industrial, and high-technology applications today.

How Do We Use Copper Today?

Presently, copper is used in building construction, power generation and transmission, electronic product manufacturing, and the production of industrial machinery and transportation vehicles. Copper wiring and plumbing are integral to the appliances, heating and cooling systems, and telecommunications links used every day in homes and businesses. Copper is an essential component in the motors, wiring, radiators, connectors, brakes, and bearings used in cars and trucks. The average car contains 1.5 kilometers (0.9 mile) of copper wire, and the total amount of copper ranges from 20 kilograms (44 pounds) in small cars to 45 kilograms (99 pounds) in luxury and hybrid vehicles.

Ancient Uses of Copper

As in ancient times, copper remains a component of coinage used in many countries, but many new uses have been identified. One of copper’s more recent applications includes its use in frequently touched surfaces (such as brass doorknobs), where copper’s antimicrobial properties reduce the transfer of germs and disease. Semiconductor manufacturers have also begun using copper for circuitry in silicon chips, which enables microprocessors to operate faster and use less energy. Copper rotors have also recently been found to increase the efficiency of electric motors, which are a major consumer of electric power.

What Properties Make Copper Useful?

The excellent alloying properties of copper have made it invaluable when combined with other metals, such as zinc (to form brass), tin (to form bronze), or nickel. These alloys have desirable characteristics and, depending on their composition, are developed for highly specialized applications. For example, copper-nickel alloy is applied to the hulls of ships because it does not corrode in seawater and reduces the adhesion of marine life, such as barnacles, thereby reducing drag and increasing fuel efficiency. Brass is more malleable and has better acoustic properties than pure copper or zinc; consequently, it is used in a variety of musical instruments, including trumpets, trombones, bells, and cymbals.

Types of Copper Deposits

Copper occurs in many forms, but the circumstances that control how, when, and where it is deposited are highly variable. As a result, copper occurs in many different minerals. Chalcopyright is the most abundant and economically significant of the copper minerals.

Research designed to better understand the geologic processes that produce mineral deposits, including copper deposits, is an important component of the USGS Mineral Resources Program. Copper deposits are broadly classified on the basis of how the deposits formed. Porphyry copper deposits, which are associated with igneous intrusions, yield about two-thirds of the world’s copper and are therefore the world’s most important type of copper deposit. Large copper deposits of this type are found in mountainous regions of western North and South America.

Another important type of copper deposit-the type contained in sedimentary rocks-accounts for approximately one-fourth of the world’s identified copper resources. These deposits occur in such areas as the central African copper belt and the Zechstein basin of Eastern Europe.

Individual copper deposits may contain hundreds of millions of tons of copper-bearing rock and commonly are developed by using open-pit mining methods. Mining operations, which usually follow ore discovery by many years, often last for decades. Although many historic mining operations were not required to conduct their mining activities in ways that would reduce their impact on the environment, current Federal and State regulations do require that mining operations use environmentally sound practices to minimize the effects of mineral development on human and ecosystem health.

USGS mineral environmental research helps characterize the natural and human interactions between copper deposits and the surrounding aquatic and terrestrial ecosystems. Research helps define the natural baseline conditions before mining begins and after mine closure. USGS scientists are investigating climatic, geologic, and hydrologic variables to better understand the resource-environment interactions


What is a Maar?

A maar is a shallow volcanic crater with steep sides that is surrounded by tephra deposits. The tephra deposits are thickest near the crater and decrease with distance from the crater.

A maar is formed by one or more underground explosions that occur when hot magma comes into contact with shallow ground water to produce a violent steam explosion. These explosions crush the overlying rocks and launch them into the air along with steam, water, ash and magmatic material. The materials usually travel straight up into the air and fall back to Earth to form the tephra deposits that surround the crater. If the tephra lithifies, it will become an igneous rocks known as tuff.


If tephra surrounding a maar lithifies, it will become a rock known as “tuff.” Tuff is composed of rock fragments and large pieces of tephra in a matrix of volcanic ash. Image by Roll-Stone of Wikimedia.

The crater floor of a maar is usually below the original ground surface. After the eruption, an inflow of groundwater often turns the crater into a shallow lake.

Most maars are a few hundred to a thousand meters in diameter and less than one hundred meters in depth. The largest maars, located on the Seward Peninsula of Alaska, are up to 8000 meters across and up to 300 meters in depth. See Google map at right.

How Common are Maars?

Maars are more numerous than most people realize. After cinder cones, maars are the second most common volcanic landform. If you search the Smithsonian Institution’s Global Volcanism Program database, you will be able to find hundreds of maars.

Maars are underrepresented as volcanic landscape features because they are small in size and lack rocky vertical development that would make them resistant to weathering and erosion. Because they are relatively small, shallow depressions, they can be easily filled with sediment and not recognized as volcanic features.

Phreatic Eruptions

The explosions that form a maar are known as phreatic explosions. They are driven in part by the enormous and instantaneous volume change that occurs when water flashes into steam.

When suddenly heated, one cubic meter of water converts into 1,600 cubic meters of steam. If this happens below Earth’s surface, the result can be a vertical eruption of steam, water, ash, volcanic bombs and rock debris. The volcanic cones produced by these eruptions are made up mostly of ejecta and are usually of very low relief – only a few tens of meters.

Phreatomagmatic Eruptions

Some magmas contain enormous amounts of dissolved gas  sometimes up to several percent gas by weight. This gas is under very high confining pressure because the magma is below Earth’s surface. During the formation of a maar, the rock above the magma chamber is usually blasted away. This suddenly reduces the confining pressure on the magma and its dissolved gas. The sudden pressure reduction allows an immediate and violent expansion of the dissolved gas. The magma then degasses like a can of shaken beer when the pull tab is removed. When degassing magma adds to the explosive force, the eruption is known as “phreatomagmatic”.

Not all phreatic and phreatomagmatic eruptions occur from the interaction of hot magma with groundwater. Other water sources include lakes, streams, the ocean, or melting permafrost.

Multiple Explosions

Maars are usually formed by multiple explosions. Initially there can be simultaneous explosions at multiple depths. After the initial explosions, groundwater from surrounding lands begins draining towards the crater and fuels additional blasts. These continue until the supply of local groundwater is depleted or the magma source has been depleted or cooled. The 1977 eruption at the East Ukinrek Maar Crater, shown in the photos at the top of this page, consisted of a series of explosions that persisted for a period of ten days.

The Largest Known Maar

The largest known maar on Earth is Devil Mountain Maar Lake, located on the northern part of the Seward Peninsula of Alaska. It was produced by a hydromagmatic eruption that occurred about 17,500 years ago. The blast spread tephra over an area of about 2,500 square kilometers. The tephra is several tens of meters thick near the maar and decreases with distance away from the maar. You can explore five of the world’s largest maars in the Google satellite image in the right column of this page.


Igneous, Sedimentary vs Metamorphic Rocks

The main difference between Igneous, Sedimentary and Metamorphic rocks, is the way that they are formed, and their various textures.

Igneous Rocks

Igneous rocks are formed when magma (or molten rocks) cool down, and become solid. High temperatures inside the crust of the Earth cause rocks to melt, and this substance is known as magma. Magma is the molten material that erupts during a volcano. This substance cools down slowly, and causes mineralization to take place. Gradually, the size of the minerals increase until they are large enough to be visible to the naked eye. Igneous rocks are mostly formed beneath the Earth’s surface.

The texture of Igneous rocks can be referred to as Phaneritic, Aphaneritic, Glassy (or vitreous), Pyroclastic or Pegmatitic. Examples of Igneous Rocks include granite, basalt and diorite.

Sedimentary Rocks


Sedimentary rocks are usually formed by sedimentation of the Earth’s material, and this normally occurs inside water bodies. The Earth’s material is constantly exposed to erosion and weathering, and the resulting accumulated loose particles eventually settle, and form Sedimentary rocks. Therefore, one can say, that these types of rocks are formed slowly from the sediments, dust and dirt of other rocks. Erosion takes place due to wind and water. After thousands of years, the eroded pieces of sand and rock settle, and become compacted to form a rock of their own.

Sedimentary rocks range from small clay-size rocks to huge boulder-size rocks. The textures of Sedimentary rocks are mainly dependent on the parameters of the clast, or the fragments of the original rock. These parameters can be of various types, such as surface texture, round, spherical or in the form of grain. The most common type of Sedimentary rock is the Conglomerate, which is caused by the accumulation of small pebbles and cobbles. Other types include shale, sandstone and limestone, which is formed from clastic rocks and the deposition of fossils and minerals.

Metamorphic Rocks

Metamorphic rocks are the result of the transformation of other rocks. Rocks that are subjected to intense heat and pressure change their original shape and form, and become Metamorphic rocks. This change in shape is referred to as metamorphism. These rocks are commonly formed by the partial melting of minerals, and re-crystallization. Gneiss is a commonly found Metamorphic rock, and it is formed by high pressure, and the partial melting of the minerals contained in the original rock.
Metamorphic rocks have textures like slaty, schistose, gneissose, granoblastic or hornfelsic. Examples of these types of rocks include slate, gneiss, marble, and quartzite, which occurs when re-crystallization changes the shape and form of an original rock formation.

1.Igneous rocks are formed when magma (or molten rocks) have cooled down and solidified. Sedimentary rocks are formed by the accumulation of other eroded substances, while Metamorphic rocks are formed when rocks change their original shape and form due to intense heat or pressure.
2.Igneous rocks are commonly found inside the Earth’s crust or mantle, while Sedimentary rocks are usually found in water bodies (sea, oceans etc.). Metamorphic rocks are found on the Earth’s surface.
3.Igneous rocks can be an important source of minerals, and Sedimentary rocks, or their bedding structure, is mostly used in civil engineering; for the construction of housing, roads, tunnels, canals etc. Geologists study the geological properties of Metamorphic rocks, as their crystalline nature provides valuable information about the temperatures and pressures within the Earth’s crust.
4.Examples of Igneous rocks include granite and basalt, while examples of Sedimentary rocks include shale, limestone and sandstone. Common examples of Metamorphic rocks are marble, slate and quartzite.




The first in a series of articles by Geoffrey Notkin, Aerolite Meteorites


What are Meteors?

Every year hundreds of hopeful people contact me because they believe that an unusual or out-of-place rock they have found is a meteorite. I frequently receive emails which contain an amusing but impossible statement along the lines of: “I think I’ve found a meteor.”

In order to appreciate the humor inherent in this sentence we must first understand the difference between meteors and meteorites. Meteor is the scientific name for a shooting star: the light emitted as fragments—usually rather small—of cosmic material which we sometimes see at night, burning high up in the earth’s atmosphere. The bright, and typically very short-lived flame, is caused by atmospheric pressure and friction as pieces of extraterrestrial material become so hot they literally incandesce, as does the air around them. Manned spacecraft such as NASA’s space shuttle and the Mercury, Gemini, and Apollo capsules experienced similar heating during re-entry into our atmosphere, which is why they employ heat shields to protect the astronauts and cargoes inside.

Meteor Showers

There are a number of periodic meteor showers visible each year in the night sky: the Perseids in August, and the Leonids in November usually being the most interesting to observe. The annual meteor showers are the result of our planet passing through debris trails left by comets. The meteors we see during those annual displays are typically small pieces of ice which rapidly burn up in the atmosphere and never make it to the surface of our planet.

Sporadic Meteors

An sporadic is a meteor which is not associated with one of the periodic showers and the majority of those meteors also burn up entirely in the atmosphere which acts as a shield, protecting us earthbound humans from falling space debris. Any portion of a meteor which does survive its fiery flight and falls to the surface of the earth is called a meteorite. So, meteorite scientists and hunters understandably chuckle to themselves when a hopeful person claims to have discovered a meteor. The excited people who ask me to help them identify a strange rock should actually be saying: “I think I’ve found a meteorite.”

A polite and charming lady once telephoned the Aerolite Meteorites office and asked if we had, for sale, any meteorites from the constellation of Castor and Pollux. I explained to her that most—or possibly all—meteorites found on earth originate from within the Asteroid Belt between Mars and Jupiter, but there is a chance that some meteorites come to us from farther afield. It has been theorized that rare carbon-bearing meteorites known as a carbonaceous chondrites—such as Murchison which fell in Victoria, Australia in 1969—may be the remnants of a comet nucleus, but that remains conjecture. The stone meteorite Zag, which was seen to fall in the Western Sahara in 1998 and later recovered by nomads, contains water and so a slightly more fanciful but intriguing theory developed which suggests that large meteorites may have carried both water and amino acids (the so-called “building blocks of life”) to our planet in the distant past.

What are Meteorites?

Meteorites are rocks, usually containing a great deal of extraterrestrial iron, which were once part of planets or large asteroids. These celestial bodies broke up, or perhaps never fully formed, millions or even billions of years ago. Fragments from these long-dead alien worlds wandered in the coldness of space for great periods of time before crossing paths with our own planet. Their tremendous terminal velocity, which can result in an encounter with our atmosphere at a staggering 17,000 miles per hour, produces a short fiery life as a meteor. Most meteors burn for only a few seconds, and that brief period of heat is part of what makes meteorites so very unique and fascinating. Fierce temperatures cause surfaces to literally melt and flow, creating remarkable features which are entirely unique to meteorites, such as regmaglypts (“thumbprints”), fusion crust, orientation, contraction cracks, and rollover lips. These colorful terms will be discussed and examined in future editions of Meteorwritings.

Meteorites: Very Rare and Very Old

Meteorites are among the rarest materials found on earth and are also the oldest things any human has ever touched. Chondrules—small, colorful, grain-like spheres about the size of a pin head—are found in the most common type of stone meteorite, and give that class its name: the chondrites. Chondrules are believed to have formed in the solar nebula disk, even before the planets which now inhabit our solar system. Our own planet was probably once made up of chondritic material, but geologic processes have obliterated all traces of the ancient chondrules. The only way we can study these 4.6 billion year old mementoes from the early days of the Solar System is by looking at meteorites. And so meteorites become valuable to scientists as they are nothing less than history, chemistry, and geology lessons from space.


Sikhote-Alin Iron Meteorite


small stone meteorites